ON THE
TYPESETTING
OF
COMPUTER
PROGRAMS

ESMOND PITT

Copyright © Esmond Pitt, 2001, 2003 . All rights reserved.

The following remarks are offered to designers and typesetters who have to set texts containing
computer program text, and for the information of authors of such texts. I write from the twin
backgrounds of 2 9 years’s experience in computer programming and a lifelong interest in ty-
pography.

There are sound reasons, some good, some bad, for the problems involved in typesetting
computer programs. In many cases, these problems have simple solutions which will not be
found abhorrent either to typographers or programmers, but which may not be obvious to ei-
ther group.

The terms ‘code’, ‘computer code’, ‘computer programs’, ‘program text’, and ‘program code’ all
appear in these notes, always with the same meaning.

1 PROGRAM CODE IS A SCIENTIFIC NOTATION

Typographers are primarily concerned with legibility, and have tools, practices, and traditions
dating back hundreds and indeed thousands of years on which to rely when setting texts in
natural languages. However, computer programs are not written in natural languages. They
are written in ‘programming languages’: artificial languages, which have their own rules of
syntax, their own conventions of presentation, and their own criteria of legibility. Computer
code is therefore a special domain for typesetting, just as are music, mathematics, and chemis-
try. These domains have their own rules, which are not the rules used when setting natural
languages.

As recently as 1978 the prominent computer scientist Donald Knuth became so dissatisfied
by existing techniques for typesetting of mathematics that he invented the TgX system for com-
puter typography. The typesetting of mathematics is hundreds of years older than the typeset-
ting of computer programs. Computer programming itself is of very recent origin, and the
practice of setting it in type doesn’t go back more than about 4 5 years: significant volumes of

13 JANUARY 2003 6:16 PM

On the Typesetting of Computer Programs Esmond Pitt

computer code have only been published in the last 20 years or less. The associated ty-
pographical discipline is immature or indeed practically non-existent, and the typograph-
ical expectations of the practitioners in the field are also low.

There are differing ideas within the profession about what constitutes good presenta-
tion of computer programs in their original medium, and there is no reason to consider
this odd.! There are many programming languages, although they can be grouped into
families, each broadly associated with a visual style.> Sometimes the visual style is more
or less compulsory (i.e. enforced by the computer). More usually, visual style is conven-
tional: the result of a very broad agreement, subject to a surprisingly small set of varia-
tions. Recent ‘intelligent’ program editors can be configured to observe a number of
common, independent variations in programming style: this servers to demonstrate that
although overall style can be mechanised, programmers, including author-programmers,
tend to each have their own recognizable stylistic quirks.

2 COMPUTERS ARE TYPOGRAPHICALLY IMPOVER-
ISHED

The ‘look and feel” of computer input and output derives not from millennia of scribal
lore and centuries of typographic practice, but from mechanical tabulation and accounting
systems, 8 o -character Hollerith punched cards, telex machines, Teletype machines, 13 2 -
column uppercase-only line printers, dot-matrix terminals and printers, and 24 x 8o
visual display units (VDUs). The long and distinguished history of typography did not
impinge on most of these developments.

The character set itself is impoverished. The reasons for this were primarily economic.
Early computers were extremely expensive, and were designed for mathematical and en-
gineering convenience and economy, aesthetic concerns being secondary (or non-exist-
ent). Computer characters came from minimalist character sets like EBcD1C and Ascrr,
designed to fit into a byte.? In early mainframes a byte was 6 bits, capable of holding 6 4
eBcDIC values; later, the 8 -bit byte, capable of holding 256 ascr1 values, became uni-
versal. By contrast, Gutenberg’s compositing case for the 4 2 -line Bible already held 290
‘sorts’.*

Computer languages themselves do not derive from English,” French, or other natural
languages, but from artificial languages like algebra & set theory from mathematics, and
propositional & predicate calculus from formal logic.

1. Compare the free use of line breaks and indentation within any mathematical text.
2. This is comparable to the existence of both Newton and Leibniz notations for calculus.

3. Unicode provides for at least 216 characters; however it is a code for characters, not for composi-
tors’ sorts, lacking e.g. ligatures, non-ranging numberals, small capitals, compositor’s dashes and
spaces, &c.

4. Bringhurst, The Elements of Typographical Style, p. 180.

5. With the notable exception of coBoL.

Esmond Pitt On the Typesetting of Computer Programs

3 TYPOGRAPHY OF PROGRAMMING LANGUAGES
For typographic purposes, programming languages can be divided into two groups:

(a) ‘Columnar’ languages: these are the early languages such as ForTRAN, cOBOL,
rRPG, in which the language is defined on an 8 0 -character columnar format (8 o col-
umns of one character each): certain columns, or adjacent groups of columns, have
specific purposes. Modern ‘assembly’ languages continue to use columnar formats.

(b) ‘Free-form’ languages: in these languages, all white space, including line and page
breaks, is insignificant except insofar as it separates word from word (i.e. is treated
by the computer as a single space). This group includes most programming languages

designed since the early 1960s, certainly including C, C++, Java, JavaScript, the

varieties of Basic, Pascal, sot, the varieties of Algol, pr/1, e

The columnar languages came first, as being easier for humans to conceive, define, and
comprehend. The free-form languages came about on the realization that it is easier for
the computer to completely ignore all two-dimensional aspects of the program and just
view it as a linear sequence of characters. However, this is not easier for the reader. Prac-
tically all programmers use highly disciplined two-dimensional layout techniques, which
remain easier for humans to conceive and comprehend.

It is possible to format any free-form language program as a more or less left- and right-
justified paragraph of continuous text, but the result is entirely incomprehensible by a
human. This technique is often used by ‘source code obfuscators’, to conceal the workings of
a program while making the source code publicly available: this is the clearest possible evi-
dence that natural language typography cannot be sensibly applied to computer programs,
precisely because the result is illegible.

Programming languages, whether columnar or free-form, exhibit common typo-
graphic traits, which mostly derive from the hardware originally used as computer input
and output devices as mentioned above. These are discussed in the subsections following.

3.1 Indentation is part of the notation

The indentation from the left-hand margin is critical to the legibility of program code. In
columnar languages, indentation from the left affects how the text is understood by the
computer, i.e. is part of the syntax of the language. In free-form languages, indentation
no longer conveys meaning to the computer, but it still conveys critical meaning about
logical structure to the reader.?

In this respect, indentation in computer programs is no different from indentation in
natural languages: consider multi-level lists, which represent a logical structure. Deeply

1. The free-form languages can themselves be further divided in ways which are not relevant to this
essay.

On the Typesetting of Computer Programs Esmond Pitt

nested logical structures are endemic to computer programming, and cannot be merely
avoided or recommended against, as in natural languages. A typographer’s function is to
convey the author’s intention legibly: in computer programs a great deal of the intent is
represented by indentation.

3.2 Line breaks are part of the notation

Line breaks in computer code are subject to the rules of the language, not the rules of
English or typography. In practically all programming languages, line breaks are elements
of the syntax. This is trivially true in the case of columnar languages, but it is also true
in most free-form languages:!

(a) in many of these languages (e.g. forms of Basic), line breaks terminate statements
(b) special syntax is generally required to continue quoted strings accross line breaks

(c) most of these languages have comment formats in which the line break terminates
the comment.

3.3 Quotation marks are part of the notation

Most programming languages use double quotes to delimit strings (sequences of one or
more characters in the computer), and single quotes to delimit single characters (or, con-
fusingly for the typographer, program notations which represent single characters in the
computer, e.g. ‘0x0a’ or ‘\n").

These are invariably rules of the programming language, against which typographical
practice—specifically, the typographic preference for single quotes—cannot prevail.

Usually the author’s text will have been checked for errors by the computer (the ‘com-
piler’); in any case the typographer’s function must be to set it as submitted.

3.4 Set width

The expected set width of computer program text is 8o characters. Typographically
speaking, this is not actually excessive, but it is well above the norm of 6065 characters
for a book page. Historicaﬂgz, the 8 o—character width arose because programs were first
notated on Hollerith cards,” which were already ubiquitous in automatic tabulation sys-
tems. For backward-compatibility reasons, the same width had to be supported by subse-

2. In free-form languages, meaning about logical structure is represented to the computer by { and },
or ‘begin’ and ‘end’. Although the computer doesn’t care how these relate visually, it is critically
important for the reader to be able to quickly relate a { to its closing }, which may be many lines
away. It is precisely because the computer doesn't care that the visual alignment of these is so crit-
ical.

1. Certainly this is true of the mainstream free-format languages C, C++, Java, JavaScript, and Vis-
ual Basic. In fact it is difficult to identify a free-format language in which one or other or these
principles does not apply: possibly the original Pascal or some of the micro-versions of PL/1.

Esmond Pitt On the Typesetting of Computer Programs

quent equipment used for entering programs: Teletype terminals, dot-matrix terminals,
visual display units, and, ultimately, graphical program editors.

Fortunately there is a way to reduce this set width without using tiny fonts: see §4.

3.5 Justification

Computer programs are always written, viewed, and set left-justified, right-ragged. This
is a matter of legibility, the typographer’s primary concern. As noted above, paragraphs
of code set solid and justified left and right are utterly illegible. In most cases they are
also incorrect by virtue of §3.2.1

3.6 Sans serif

Computer programs are conventionally displayed in sans-serif fonts. This is largely for
the historical reasons already given.

It is also sound typographic practice, as it sets off program code from the narrative very
clearly, especially when words of program text have to appear within the narrative.

Solid paragraphs of program text do not occur, and program code is scrutinized rather
than speed-read, so the reduced legibility of sans-serif fonts when used en masse is not
an issue.

3.7 Monospacing

Historically, all the equipment used for entering computer programs used monospaced
fonts, from Hollerith cards, line printers, Teletype machines, dot-matrix terminals, and
so on to VDUs and early graphical editors.

In columnar programming languages, certain elements must appear in certain columns
or groups of columns. For this reason, use of a monospaced font is essential in those lan-
guages.

The practice of monospacing has carried over into the later free-form languages by vir-
tue of hardware, history, and habit. Even when graphical editors became available, the
historical ‘pull” of this legacy is so strong that, by default, monospaced fonts continue to
be used for program text. I don’t accept that this is necessary: see my recommendations

in §4.

2. And printed on 1 3 2 -column line printers in upper-case only. It could have been worse: Reming-
ton Rand sold punch cards with 9o and even 130 columns in the era of office tabulation. Fortu-
nately for typographers, they only had 15 % or so of the market.

1. If further discussion were needed, it might be pointed out that programs are not written in para-
graphs at all; they are composed of nested logical ‘blocks’.

On the Typesetting of Computer Programs Esmond Pitt

3.8 Tab stops

Tab stops of 8 spaces are commonly employed in program code. This was originally a
feature of the hardware discussed above. It relates strongly to the generous 8 o —character
page width which was available.

This 8 —space standard for tab stops is obviously far too wide. When programmable tab
widths became available some 20 years ago on hardware, I reduced my own tab stops to
4 spaces, and more latterly, when graphical editing software became available, to 2. See
also my recommendations in §4.

3.9 Page breaks

When setting computer code in a book, page breaks can’t just follow the simple orphan/
widow principles used when typesetting natural languages. Instead, the logical ‘blocks’ of
the code must be kept together if possible. It is not usually possible for the typographer
to determine the block boundaries in code, although a blank line is generally an acceptable
point for a page break. ‘Block comments’ should be kept with the following block of code.
If you don’t know what these are, ask the author.

3.10 Hyphenation

Programming languages are not natural languages and do not observe the usual hyphen-
ation conventions. Instead:

(a) Columnar languages use a ‘continuation character’ in a specific column to indicate
either (a) that this line continues the previous line, or (b) that this line is continued
by the next line, depending on the particular language.

(b) Free-form programming languages are designed such that all white space is insignif-
icant, and it is up to the programmer to break the line at a visually or logically sen-
sible place.

Neither of these practices can be reduced to typographic rules for hyphenation. Instead,
the MS must be set as submitted, or the author must be consulted.

3.11 Program words

Mathematicians generally use single letters for variables, and symbols for operators. Pro-
gramming languages allow programmer-defined words—up to 3 0 characters or more—
for variables, and the built-in operators of the language often appear as words as well.

Programmers freely form compound words: either:

(a) along Germanic lines: e.g. PendingEventQueue, ClientSocket, ByteArrayInput-
Stream, or

Esmond Pitt On the Typesetting of Computer Programs

(b) by pseudo-hyphenation with the underscore character: e.g. BUFFER_sIZE,
MAX_THREADS, &c.

In ‘object-oriented’ languages, words can further be compounded with punctuation, ac-
cording to language-specific rules, e.g. String::length (C++), or java.lang.String (Java).
The latter is a ‘fully-qualified Java class name’: these are often problematic when typeset
in the narrative, as they frequently run over desired or necessary line-breaks. As with
URrLs, frequently the only answer is to set them in a separate line.

Words in program text must never be hyphenated or line-broken except in accordance
with the author’s instructions.

3.12 Upper and lower case

Case in program code is usually significant to the computer, and practically always to
writers and their readers.

Pairs of words are often used which differ only in case, representing different things:
e.g. BufferedOutputStream and bufferedOutputStream.

Programmers, especially author-programmers, are usually highly systematic about
case, in ways which may not necessarily make sense to the typographer (or other pro-
grammers!).

4 PRACTICAL RECOMMENDATIONS
The following practices are recommended when typesetting computer programs.

4.1 Indent in em units

The solution to many of the issues in typesetting computer programs is the em. The au-
thor’s tabs will most likely be to the next multiple of 8 spaces (1, 9, 17, ...); typographic
tabs for program code should be in multiples of 1 or 2 ems.

Adopting the em as the unit of indentation may at first ‘look funny’ to the author, as
the indents may be much narrower than seen on screens or printouts. However, as long
as the vertical alignment of tab stops is preserved, the author’s intention is fully pre-
served.

[t is not necessary to preserve all vertical alignment, only the vertical alignment at tab
stops. The author may need to be convinced of this, but it is true.!

1. Difficulties can arise if the author doesn’t use tabs correctly, by using multiple spaces as well as
tab stops, e.g. combinations of 4 spaces and 8 -space tab stops. This is poor practice: most editing
software can be configured to (a) convert all n-space sequences to tabs and (b) display all tabs as n
spaces, which is what should be done. In the source file, tabs should be tabs, and their visual repre-
sentation should be chosen by the viewer. This is also the justification for setting tabs as ems
instead of 8 spaces. Difficulties can also arise if the author uses tabs in the middle of lines, i.e. after
left-indentation tabs and other text.

On the Typesetting of Computer Programs Esmond Pitt

Setting tabs in em units has the following additional beneficial effects:

(a) TItis good typography, for the same reasons as in natural languages: it obeys the hor-
izontal rhythm of the line.

(b) Tt reduces the appetite for the 8 o -character line width, allowing a more moderate set
width to be used, or a larger font.

(c) Similarly, it reduces the appetite for hyphenation and line breaks. In fact it may allow
lines which the author had to break to be set unbroken: the typesetter may wish to
consult with the author after doing a proof, to refine the setting of the program code.

(d) In free-form languages, it eliminates the need for monospaced fonts. As the em is a
constant width, the logical structure of the program is still clearly expressed, without
relying on all characters being a constant width.

4.2 Fonts

If unsure, ask the author whether the language is free-form or columnar.
Columnar languages should always be set in a monospaced font.

Free-form language programmers are used to seeing Courier on their terminals and
screens, and Courier or Helvetica in print. This applies even to programmers who have
never seen a columnar language. This is typographically unfortunate: worse, there is a
strong prejudice in favour of monospaced fonts even for free-form languages. As I have
shown above, this is unnecessary: proportional fonts can certainly be used as long as verti-
cal alignment of tab-stops is preserved.

Recent graphical editors use a mix of fonts for displaying programs. As graphical edi-
tors are becoming more widely used, it seems to me quite legitimate to imitate in print
what they do on the screen. Typically this is as follows:

(a) program text: a sans-serif font (not necessarily monospaced)

(b) comments: italic face of the same font, or sometimes italics of a Roman font

(©) ‘keywords’ of the language (‘if/, ‘while’, etc.): boldface of the program text font.!

One designer recommends TheSansMonoCondensed, by Lucas de Groot. As men-
tioned above, as a programmer I can see no objection to proportionally-spaced fonts for
free-form languages, as long as vertical alignment at tab stops is preserved.

I would also give serious consideration to using faces in which the roman and sans-serif
are strongly related, e.g. Scala and Scala Sans, or Quadraat and Quadraat Sans, using the
roman form for the narrative.

1. This is definitely an optional ‘frill’,, requiring the author’s detailed assistance or markup.

Esmond Pitt On the Typesetting of Computer Programs

Prejudices do exist against proportional-spaced fonts for computer code, or indeed
against anything but Courier, but these are declining as graphical editors become more
widely used, and as better books are published.

See also §5.

4.3 Line breaks

Line breaks must be as per MS. If a line break must be set where the MS has none, consult
the author, who may specify a different break point, or may rewrite the affected code.
Usually the follow-on must be indented at least to the current indentation level, but again
the author is the only possible guide.

If the suggestion at §4.. 1 is followed, this situation will rarely arise; indeed, the opposite
situation will arise—i.e. being able to set one line where the MS has a broken line. Such
opportunities must be discussed with the author, or obey MS markings.

Consult the author for guidelines about line-breaks in code words when set in the nar-
rative. The guideline may well be ‘don’t’!

4.4 Page breaks

If page breaks may occur in the middle of program code, the author must be consulted as
to preferred page break points. Usually this is to be avoided altogether in short examples;
in longer programs, the author should indicate all possible page breaks in the MS.!
Have the author divide code paragraphs into moderate-sized paragraphs, and use a
‘keep all lines together’ setting if available; otherwise, use a widow/orphan setting larger
than or equal to the author’s maximum code paragraph size.
See also §3.10.

4.5 Quotes

Conventionally, ‘straight’ quotes are used, not typographic quotes. This is historically
determined, by the use of fonts without typographic quotes (e.g. Courier, Helvetica) in
typeset computer code. It is not required by the properties of the notation.

[see no reason against using typographic quotes when setting computer programs as
long as single quotes stay single and double quotes stay double, i.e. as long as the author’s
quotes are preserved rather than ‘corrected’ to standard typographic practice.

4.6 Numerals

Conventionally, lining numerals have always been used in program code, for the histor-
ico-hardware reasons already given. If you can be bothered using old-style numerals in

1. In publishing books, it is fair to wonder whether long programs should be printed at all. They are
more usful in electronic form, i.e. on a CD or Web page—unless there are cross-references to the
code from the text, in which case the author and deisgner need to consider whether line numbers

should be shown.

On the Typesetting of Computer Programs Esmond Pitt

program code, or if the font is built that way, I can see no reason against it. It is best to
use a font in which 1, I, and | (lower-case L) are distinct, as also 0 (zero) and O.

5 EXAMPLES

The following examples show how a program text may appear: in the MS as written by
the author, and when typeset in various different ways.

The example is written in the Java language. It will be seen that although the typeset
examples are much more compact horizontally, all essential vertical alignment is pre-
served, even in the proportional font.!

Where possible, I have set comments in italic.

These examples can be used to convince sceptics. Sometimes the strongest argument
for tabbing to ems is that it conserves the width when, as usual, you don’t have the au-
thor’s original 8 o—character width available.

5.1 Code as per MS

10 pt Courier, tab stops every 8 spaces.

public class Queue extends Vector

{ public synchronized void enqueue (Object object)
{ super.add (object) ;
notifyall () ; // waken waiters
}
public synchronized Object dequeue ()
{
while (size() < 1)
wait () ;
return super.remove (0) ;
}
}

5.2 Code as per MS, alternate format

10 pt Courier, tab stops every 8 spaces. This example demonstrates another possible for-
mat the author might have used. Note that in this format the opening brace { is placed on
the end of the line, and the closing brace } aligns with the beginning of the line which
contains the matching opening brace. Many programmers find this layout preferable. I

1. i.e. (in this language) the vertical alignment of matching pairs of { and }, and the consecutive
indentations they enclose.

10

Esmond Pitt On the Typesetting of Computer Programs

don’t. This format does have the typographic advantage of economizing slightly on ver-
tical space.

public class Queue extends Vector (
public synchronized void enqueue (Object object) {
super.add (object) ;
notifyAll () ; // waken waiters

}

public synchronized Object dequeue () {
while (size() < 1)
wait () ;
return super.remove (0) ;

5.3 Code typeset in a monospaced font

9.13 pt Lucida Sans Typewriter, laterally condensed to 95% of the resulting size, tab
stops every em.

public class Queue extends Vector

{
public void enqueue(Object object)

{
super.add(object);
notifyAl11();// waken waiters

}

public synchronized Object dequeue()

{
while (size() < 1)
wait(Q;
return super.remove(0);

}
}

5.4 Code typeset in a proportional font

11 pt Gill Sans, tab stops every em: not necessarily as a recommendation, but just to dem-
onstrate that vertical alignment can be preserved even with a proportional font.

1. This set at 83 % of point size to match narrative text set in a roman font.

11

On the Typesetting of Computer Programs

public class Queue extends Vector

{

public void enqueue(Object object)

{
super.add(object);
notifyAll();// waken waiters

}

public synchronized Object dequeue()
{

while (size() < I)
wait();
return super.remove(0);
}
}

5.5 Optima (Hermann Zapf)

Esmond Pitt

I think this is a rather good choice, as it avoids the bare appearance of most sans-serifs
while still preserving a difference from serif fonts. It will be seen that it goes quite nicely

with this copy, which is Aldus body text and Palatino headings.

public class Queue extends Vector
{
public void enqueue(Object object)
{
super.add(object);
notifyAll(); // waken waiters

}

public synchronized Object dequeue()
{
while (size() < 1)
wait();
return super.remove(0);
}
}

5.6 Code typeset in a roman font

11 pt Garamond, tab stops every em: again, not necessarily as a recommendation, but
simply to demonstrate to sceptics that vertical alignment in a free-form (non-columnar)

language like Java can be preserved even with a proportional roman font.

12

Esmond Pitt On the Typesetting of Computer Programs

public class Queue extends Vector

{
public void enqueue(Object object)

super.add(object);
notifyAll(); // waken waiters
}

public synchronized Object dequeue()
{
while (size() < 1)
wait();
return super.remove(0);
}
}

5.7 Code typeset in a roman font, justified

11 pt Garamond, tab stops every em: again. This ridiculous example is provided simply
to demonstrate why the author’s linebreaks and left-indentation are aspects of legibility.
As a matter of fact this rendition is not even correct, because the comment ‘waken waiters’
is syntactically terminated by the following linebreak, which is elided here.

public class Queue extends Vector { public void enqueue(Object object) { super.add(object);
notifyAll(); // waken waiters } public synchronized Object dequeue() { while (size() < 1)
wait(); return super.remove(0); } }

6 AUTHOR

The author is a computer consultant and writer, and typesets his own books.

Address: Melbourne Software Company, 286 Canterbury Rd, St Kilda West, Victoria
3182, Australia; esmond.pitt@bigpond.com.

7 COLOPHON

This text is set in 11/1 3 pt Aldus, using AldusSC small caps and numerals for body text
and footnotes, and Palatino and PalatinoSC in the titles and headings. The examples are
variously set in Courier, Lucida Sans Typewriter, Gill Sans, and Garamond. The e-mail
address is set in Hermann Zapf’s Optima. Copy was prepared with Adobe FrameMaker
7.0ps5 76 running on Windows 98sE, and distilled to ppF with Acrobat Distiller 5.05.

13

